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Abstract

With the rapid growth of current network, the demand of
resources is growing significantly. Insufficient bandwidth
results unstable throughput in a network. Software-
defined network (SDN) has been proposed to provide
optimal routing decision in the presence of congestion.
Equal Cost Multi-path (ECMP) routing cannot guarantee
optimal resource utilization. ECMP causes the long flow
collision in network because it does not consider the
network parameter such as bandwidth. In this paper, the
Flow Path Computing Algorithm (FPCA) is proposed to
minimize the network congestion by rerouting the flows in
SDN. This algorithm mainly focuses on rerouting the
traffic flows over the alternative path when the network
congestion is detected. If the flow demand is exceeded
10% of link bandwidth, the algorithm computes the light
loaded path based on the port statistics and it shifts from
the congested path to light loaded path. Simulation results
are presented to show the effectiveness of the FPCA
algorithm over ECMP.

Key Words- Software Defined Network, Equal Cost
Multi-path, OpenFlow
1. Introduction

There are many applications such as email, video
conferencing with most of the traffic on the Internet.
Enormous traffic forces congestion to deliver the data in
the network links. Traffic engineering (TE) offers the
enormous solution to improve the network performance.
Control plane and data plane are combined in dedicated
device in traditional networking. The control plane in
traditional network implements the network protocols and
accomplishes the signaling between the network devices.
The data plane forwards the packets from one port to
another port based on the routing table. When congestion
occurs, the nodes are difficult to update the information of
other nodes in the network.

Software-defined networking (SDN) accomplishes the
existing function by splitting the control plane and
forwarding plane in the network. It enables the network to
be programmable and controllable. OpenFlow protocol
use for the interactions between the controller and the
switches and it controls the network traffic by creating the
network to innovate the network application. It provides
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admission to data plane and programs the software to
forward the data between the OpenFlow switches. The
controller makes a decision to follow the rules to the
switches and determines the appropriate path which the
packets will take over the network.

In this paper, we compare our FPCA with static
ECMP hashing. Although existing network routing tends
to the dynamic way, routing in the network using
OpenFlow depends on the static path information. The
congestion in the network because of large flows disturbs
the network state and utilization of links. ECMP is a
routing method to protect link failure without loss of
traffic. ECMP allows the traffic to divide among equal
cost paths. There is a limiting factor that maximum
ECMP paths are 8 and 16. It finds the appropriate path in
the network with this limiting factor in the large networks.
It is used for short flows and it reduces the flow
completion time. So it becomes a collision by assigning
long lived flow to the same ECMP path. It is also based
on the hash function by splitting equal size partitions and
steers packets based on the information along the path.
Although ECMP provides a good performance by
providing static load balancing, it can collide over the
same path in the network. The main idea of this paper is
efficiently reroute the congested flows into the new
alternative path based on the collected port statistics from
the switches.

The rest of the paper is designed as follows:

The related work is provided in section two. Section
three provides the background of traffic engineering in
SDN. Section four motivates the flow path computing
scheme of this paper with the background of fat-tree
network topology and proposes the solution. The
experimental setup and performance evaluation are
explained in Section five. The final part of this section
concludes this paper and illustrates the ideas of future
work.

2. Related Work

In this section, we introduces about some related
works to this paper.

The work in [1] explores the effect of statistics
collection occurrence on the network load and the
correctness of the results. This system uses the



information in terms of actual link usage to calculate
available bandwidth on network link in real time
environment. This system calculates the utilization of the
link and link capacities through statistics in the network.

Authors in [2] considered a method to control the
congestion by monitoring monitors the port statistics
based on the OpenFlow switches and reroutes some of the
flows in the links which are congested. This method does
not consider the QoS constraints of other flows.

S. Song, et al. [3] proposed the flow congestion
avoidance algorithm to predict the congestion by the
controller, the utilization information is used. Link
utilization is calculated in SDN controller by dividing the
maximum bit rate and recalculated rerouting algorithm is
applied to switches which would be configured by using
OpenFlow configuration protocol.

To allocate optimal routing paths for multiple tasks at
the same time, BCMPO problem [4] is proposed to
allocate bandwidth resources with Genetic Algorithm.
The main challenge is to redirect traffic flows to get
optimal path when there is congestion problem.

An efficient method based on SDN [5] proposed for
reduction of congestion in data center networks using
linear programming, and a greedy bin packing heuristic
for rerouting of selected flows in the switches with the
congested links. This paper uses the Fat-Tree topology to
allocate traffic load. This paper reduces power
consumptions and link congestions but does not consider
rerouting the traffic.

Authors of [6] explore the use of SDN switches by
reducing the link utilization to handle a link failure. To
avoid congestion in case of link failures, the controller
reroutes traffic through non damaged paths by using pre-
set tunnels when a node occurs failure.

Tajiki et al. [7] proposed an efficient congestion
avoidance method based on the flow requirements. This
paper is compared with ECMP to prevent congestion and
the waste of resources by allocating resources.

The authors [8] proposed Mahout to monitor and
identify long flows in TCP Socket buffer. Because of the
changing of network conditions, congestion will occur
while Mahout controller selects the path. It cannot get the
optimal path over TCP connection using the traditional
ECMP.

Network utilization-aware load balancing scheme
CONGA [9] recommended the switches to gather
capacities for flowlets by splitting the flows and to
estimate of the congestion condition of the paths from the
switches. CONGA has a necessity to alter the stack of the
end-host for selecting the optimal path. Therefore, it
increases the operation costs.

3. Overview of Traffic Engineering in SDN

Traffic engineering (TE) technology is the evolution
of technology and accomplishment of SDNs. There are
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many TE architectures of SDN networks such as ATM-
TE, IP-based TE, MPLS-based TE. TE techniques in
SDN have been presented to increase the throughput of
larger networks, to optimize network performance and
traffic delivery compared to the traditional approach such
as MPLS-based TE. SDN provides centralized control of
network state and supports flexible software
programming. TE in SDN techniques should be used to
place the traffic for efficient network utilization to
allocate network resources efficiently for network
congestion avoidance. Figure 1 describes a typical SDN
architecture.  Traffic  engineering techniques are
characterized with flow management, fault tolerance, and
traffic analysis.
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Figure 1. Traffic Engineering using SDN

TE mechanisms should have an ability to detect and
recover the failure from congestion and reroute them over
information about the network. Many researchers have
been suggested to overcome this drawback. When the
SDN controller identify the failed link, it computes new
routes and sends the suitable flow entries to the switches
immediately. The information from the controller is
updated to their forwarding tables by the switches. The
controller queries statistical information from the switches
and if it detects the congestion in the network, it estimates
the flow demands and it reroutes from the congested path
to light loaded path accordingly. In traditional network,
TE with ECMP depends on computing the route and on
splitting traffic among the paths in the network. TE in
large IP networks relies on configuring static link weights
via the ECMP mechanism. We consider the aspects of TE
with ECMP for numerous generated traffic patterns.
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Figure 2. ECMP Collision Problem in Fat-tree
Network topology

A routing technique applying a hash function ECMP is
the widely used technique to improve multipath routing
networks. In ECMP, a hash value is used for direct
hashing to allocate a flow. It can cause next-hop several
times in the network and it splits the different colliding
flows to route over different paths. Therefore, it may be
unutilized link bandwidth to route the different flows over
different paths.

If multiple large flows are assigned to a shared link,
these flows are challenging for the data rate although
there are many paths with free data rate. Traditionally,
ECMP uses paths having equal costs. ECMP is used in
large network when the flow between source and
destination is routed over the shortest path. The switches
forward of flows by using ECMP, large flows can strike
on their hash and it can cause performance degradation in
a large size network. Figure 2 shows the ECMP routing.
All the packets from flow A and flow B can end up over
the same port Aggregation switch 0 due to hash collision
among large flows and it creates network bottleneck. In
this example, flow A could have been forwarded to Core
1.

4. Flow Path Computing Scheme

The main idea of traffic engineering is to minimize
congestion and reroute flows inside a network. We
describe the SDN-based flow path computing method
between source and destination in section 3. In this
section, the route selection of the flows is done by using
statistics from the controller to the switches. Congested
links are identified as over-utilized links that cause
network congestion and packet loss. The flow path
computing architecture of Figure 3 mainly focuses on the
traffic through the congested links that are rerouted to the
light-loaded alternate path.

The FPCA enhances the overall routing performance
for the traffic demands to reroute flows for traffic
engineering purposes and to prevent network congestion.
The controller dynamically estimates the natural demand

15

and calculates new alternative path. This natural demand
is less than the threshold value, 10% of link capacity. The
controller detects large flows based on flow statistics and
links statistics from the network devices. Once the
controller recognizes the flows to detect the large flows
according to the threshold value and links information
from the switches, it accomplishes natural demand
estimation and adjusts the flow to reroute to new light
loaded paths according their flow demands. The controller
checks the flow demand for the paths that satisfy the flow
by Equation (1). We compare our FPCA with static
ECMP hashing.

Controller

initiates

port statistics

monitoring
N\
\
Compute Check
port flow
statistics demand Forward
and flow exceeds using
statistics threshold ECMP

Find light loaded alternate
path using proposed path
computation algorithm

Update flow table and
install new forwarding rules
into switches

Figure 3. Flow Path Computing Architecture

Our simulator models the fat-tree network topology as
a network graph G(V, E) as shown in Figure 5 with
directed edges. In this case, we define the Flow Demand
in Equation. (1):

*
FlowDemand — FlowSpeed*8.0

MAX -CAPACITY *1000
And we define the port speed as Equation. (2) and (3):

NowPortStats =tx _bytes+rx_bytes



NowPortStats — PrePortStats
MonitoringPeriod

PortSpeed=

Here, we have to get the free bandwidth in Equation (4):

GetFreebw= max(LinkCapacity — PortSpeed* 78'0 )

1000

The algorithm calculates existing flow’s demand using
flow statistics. If the flow demand is exceeded 10% of
link bandwidth, it computes the light loaded path based on
port statistics and the existing flow is shifted from the
congested path to light loaded path. We show the pseudo
code for flow path computing algorithm (FPCA) in Figure
4. Then fp represents flow demand, bwm. defines the
maximum bandwidth, bw¢ represents feasible bandwidth
and Cy, defines the congested path.

Input: link bandwidth, Topology: G(V,E)
Output: Number of selected path

p= selected path;

Initialize: L.capacity =bwmax;

Begin

Loop

For each psrc—adstin link do

if bwt + fp < L.capacity then

p < bws + fo

return p

else

p= Cn(hash),

return p = Psrc—dst(Ch)
end Loop

end

Figure 4. Flow Path computing algorithm (FPCA)
5. Experimental Setup

For testing flow path computing system, we created
the topology in Mininet. The VM image has a 64-bits
Ubuntu 16.04 installed as the guest OS. The system was
run with Core TM (i5) 1.6 GHz CPU and 4 GB of RAM.
These are the minimum requirements to run the
environment. There are various topologies such as leaf-
spine, fat-tree, Jellyfish and so on to interconnect various
nodes in computer networks. The idea of Fat-Tree is to
provide effective communication. Consequently, our
proposed approach use Fat-Tree topology to deliver
multiple paths as an environment.
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We use the fat-tree network topology of (k=4) with 20
(4-port) switches and 16 hosts. It consists of K-port
switches that contain k pods. Each pod is connected to
two layers of k/2 switches. Each aggregation consists of
(k/2)2 core switches with one port attached to each k pod.
Each edge switch is connected to (k/2) hosts and the
remaining k/2 port of edge switches is connected to a
(k/2) aggregation switch. Firstly, we test the experiment
with FPCA using iperf. Subsequently, the link between
switches set the maximum capacity of 100 Mbps, the
maximum throughput for a flow can send is nearly 100
Mbps. The throughput for different flow in both cases is
measured.

The evaluation was performed on the Mininet testbed
and the OpenFlow controller configured to communicate
with the data plane. In our testing, all data flows are built
with iperf tool. The received throughput is observed from
iperf’s statistics. The script in this system is based on
Python to generate flows.
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Figure 5. Experimental testbed with Fat-tree
Network topology

Table 1. Congestion Method

Congestion Threshold Condition
Flow Demand> 10% of link Congested
capacity
Flow Demand =< 10% of link Normal
capacity

In this system, the algorithm calculates existing
flow’s demand using flow statistics as shown in Figure 6.
If the flow demand is exceeded 10% of link bandwidth, it
computes the light loaded path based on port statistics and
finally, the existing flow is shifted from the congested
path to light loaded path as shown in Table 1.



Figure 6. Port statistics from the controller

5.1. Performance Evaluation

Experimental results are based on the different
parameters for the network topology. This paper shows
the performance of our solution in terms of flow
completion time and throughput. The FPCA is performed
by generating different number of flows as shown in
Figure 7, 8, 9, 10 and Table 2.

Table 2. Number of Flows

No. of Source-Destination
Flows
1 H9->H1, H10->H2
2 H9 and H10->H2
4 H9->H1, H10->H1, H11->H2, H12->H2

10.1.6.1 10.1.6.2 10.5.0.1 10.5.0.2

16.1.0.2 | 6.00 6.60 6.60 6.60
10.5.0.1 | 1.00 6.60 6,00 6.00
10.5.6.2 | 0.00 1.00 ©.00 0.60

One Flow from source 10.3.0.1 to destination 10.1.0.1
One Flow from source 10.30. to destination 10101

Twa flows to destination 10.1.0.2

Figure 8. Demand estimation with two flows

We compare FPCA with ECMP to present the goal of
the performance. Assuming that flow f sets the primary
path (3005 — 2006 — 1003 — 2002 — 3001) as shown in
Figure 9 and Table 3, the alternate paths used to protect
every link on the primary path of a flow obtained using
FPCA Algorithm is shown in Table 1.

Table 3. Primary Flows

Source- Primary
Destination Path

HO->H1, 3005 2—63306 ;6(;1003 —

H10->H2 -

Two flows to destination 10.1.0.1
Two flows to destination 10.2.0.1

PATH]10.5.0.1<- - .1.0.1: » 2 , 1003, 2002, 3001]
INSTALLING]10.5.0.1<-->10.1.0.1: , 2006, 1003, 2002, 3001]
PATH]10.5.0.2< : . , 1003, 2002, 3001]
INSTALLING]10.5. B & , 2006, 1003, 2002, 3001]
PATH]10.6.0.1< 3 . , 1003, 2002, 3002]
INSTALLING]10. ©.2.0.1: , 2006, 1003, 2002, 3002]
PATH]10.6.0.2< 1 -1z . , 1003, 2002, 3002]
INSTALLING]10. - .2.0.1: , 2006, 1003, 2002, 3002]

Figure 9. The primary path between the switches

We identify two types of collisions caused by hashing.
First, flows 1 and 2 interfere locally at switch
Aggregation2 due to a hash collision and are capped by
the outgoing link to Core2(1003). In this example, flow 1
could have been forwarded to Corel(1002). The
algorithm tries to select the best rule that can protect the
flow without interfering other backup paths. Therefore,
the congested traffic at switch (1003) will be rerouted
through (3005 — 2005 — 1002 = 2001 — 3001) as shown
in Figure 10 and Table 4.

Table 4. Rerouted Flows

Source- Rerouted
Destination path
3005 — 2005 — 1002 —
H9->H1 , HA1 0->H2 2001 — 3001

.08
1)

.00 0.
AR A AR A AR A AR A

.50
.08
| ©.00

[ ]
L8 a
| .50 ©.00
G e
] E}

)

.80 o. N . . Two flows to destination 10.1.0.1
.50 9.00 0.00 0.00 .00 Two flows to destination 10.2.0.1

-1

PATH]16.5.0.1< H es, ees, ez, , 3001]
. , 3001]

, 3001]
PATH]16.6. .1z
INSTALLING c Bon 5, , 2 , 3002]
PATH]10.6. -1z - 1,
INSTALLING]10. S2Eeal 6, . , 2001, 3002]

Figure 10. Rerouted path between the switches

The list of traffic flows between the switches using
fat-tree network topology in the experiments as shown in
Table 5.



Table 5. Traffic Flows between the switches

Source | Destination (';gl—) Thz;\)/l“b%g)pm
H9 H1 8.8 95.6
H10 HA 8.8 95.7
H11 H2 9.0 92.8
H12 H2 8.9 95.6

After testing, we showed the experiment flow between
(H9->H1, HI10->H1, HI11->H2, HI2->H2) and its
throughput was shown in Figure 11. According to the
testing, we compare FPCA against ECMP. FPCA
achieves better performance than ECMP. FPCAl and
FPCAZ2 have 39.54% and 37.76% more than ECMP1 and
ECMP2. Throughput of ECMP decreases up to 60% due
to hash collision of ECMP and increasing the number of

flows and congestion in the network.
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Figure 11. Throughput between different traffic
types

We verified the comparison of the flow completion
time in the two above-mentioned cases as shown in
Figure 12. The FCT in ECMP increases from 13.6 to
141.1, while FPCA increases slightly from 11 to 55.8. For
flow completion time, FPC achieves better performance
than ECMP. FPCA1 and FPCA2 decrease 39.46% and
37.7% than ECMP1 and ECMP2. ECMP flows increase
significantly 140s due to congestion.
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Figure 12. Flow completion time FCT between
different traffic types

6. Conclusion
We presented the flow path computation algorithm.

The proposed optimal path computation is based on flow
demand calculation and port speed. If the existing flow’s
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demand is exceeded 10% of link bandwidth, the flow is
rerouted to light loaded path which is calculated using
port speed. In this paper, FPCA was demonstrated better
throughput and flow completion time compared to ECMP.
In our experiments, FPCA increases the network
throughput able to 2x. This paper has implemented a
solution that can minimize the network congestion by
rerouting the flows over the alternative paths in SDN.
Based on the simulation results, the performance of our
proposed algorithm outperforms flow hashing-based
ECMP load-balancing. In our future work, we will extend
the idea of long flow collision problem by encouraging
for future progress.
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